SYNTHESIS AND ALKYLATION OF N₍₃₎-ARYL-N₍₅₎-PHENYL-6-AMINO-4-ARYL(2-FURYL)-2-THIOXO-1,2,3,4-TETRAHYDROPYRIDINE-3,5-DICARBOXAMIDE

V. D. Dyachenko, D. A. Krasnikov, and M. V. Khorik

 $N_{(3)}$ -Aryl- $N_{(5)}$ -phenyl-6-amino-4-aryl(2-furyl)-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamides have been obtained by the interaction of N-phenyl-3-aryl(2-furyl)-2-cyanoacrylamides with 3-amino-3-thioxopropananilides under the conditions of the Michael reaction. $N_{(3)}$ -Aryl- $N_{(5)}$ -phenyl-2-alkylthio-6-amino-4-aryl(2-furyl)-3,4-dihydropyridine-3,5-dicarboxamides and $N_{(3)}$, $N_{(5)}$ -diphenyl-6-benzylthio-4-(2-furyl)-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamides were synthesized by alkylation of the products.

Keywords: dihydropyridines, tetrahydropyridines, alkylation, heterocyclization, Michael reaction.

Derivatives of 3,5-dicarbamoyl-substituted partially hydrogenated pyridines attract the attention of investigators in connection with the discovery of a series of biologically active compounds among them, in particular, calcium channel antagonists [1-5].

Previously we obtained for the first time 3-carbamoyl-6-methyl-5-phenyl-2-thioxocarbamoyl-1,2,3,4-tetrahydropyridine-4-spirocyclohexane [6] by the Michael reaction and 6-amino-2-mercaptopyridine-3,5-dicarboxamides by the S_N vin reaction [7].

In the present work the interaction has been investigated of N-phenyl-3-aryl(2-furyl)-2-cyanoacrylamides **1a-d** with 3-amino-3-thioxopropanilides **2a-b** in absolute ethanol at 20°C in the presence of sodium ethylate. It was shown that this reaction leads to the formation of $N_{(3)}$ -aryl- $N_{(5)}$ -phenyl-6-amino-4-aryl(2-furyl)-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamides **3a-e** (Table 1). The pathway for this process probably includes the formation of the appropriate Michael adducts **4**, readily converting under the conditions of the reaction by intramolecular chemoselective heterocyclization into the substituted partially hydrogenated pyridines **3a-e**.

The corresponding $N_{(3)}$ -aryl- $N_{(5)}$ -phenyl-2-alkylthio-6-amino-4-aryl(2-furyl)-3,4-dihydropyridine-3,5-dicarboxamides **6a-c** were synthesized on interacting compounds **3** with alkyl halides **5a,b** in ethanol in the presence of sodium ethylate. Replacement of sodium ethylate in this reaction by aqueous KOH solution and heating the reaction mixture to 50°C is accompanied not only by the formation of the corresponding organic sulfide but also by hydrolysis of the amino group. $N_{(3)}$, $N_{(5)}$ -Diphenyl-6-benzylthio-4-(2-furyl)-2-oxo-1,2,3,4tetrahydropyridine-3,5-dicarboxamide (7) was obtained in this way.

Lugansk Taras Shevchenko National Pedagogical University, Lugansk 91011, Ukraine; e-mail: dvd_lug@online.lg.ua. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 1018-1023, July, 2008. Original article submitted March 22, 2007.

A characteristic of the ¹H NMR spectra of compounds **3a-e** is the presence of all the proton signals of the substituents of the tetrahydropyridine nucleus in the appropriate regions (Table 2), and also of signals of the H-3 and H-4 protons as singlets at 4.07-4.25 and 5.01-5.09 ppm respectively. The absence of splitting of these signals into the expected doublets may be explained by the formation of a conformation of the tetrahydropyridine ring in which the dihedral angle of the H–C₍₃₎–C₍₄₎–H fragment, described by the Karplus equation, approaches 90° [8].

1 a R = 2-furyl, b R = Ph, c R = 4-MeC₆H₄, d R = 4-ClC₆H₄; **2** a Ar = Ph, b Ar = 3-MeC₆H₄; **3** a-d Ar = Ph; a R = 2- furyl, b R = Ph, c R = 4-MeC₆H₄, d R = 4-ClC₆H₄, e Ar = 3-MeC₆H₄, R = 4-ClC₆H₄; **5** a Hal = I, R¹ = H, b Hal = Cl, R¹ = Ph; **6** a R = 2-furyl, R¹ = H, b R = R¹ = Ph, c R = 4-MeC₆H₄, R¹ = Ph

TABLE 1. Characteristics and Data of Elemental Analysis of Compounds **3a-e, 6a-c, 7**

Com-	Empirical formula	Found, % Calculated, %			mp, °C	Yield, %
pound		С	Н	N		, í
3a	$C_{23}H_{20}N_4O_3S$	<u>63.79</u> 63.87	$\frac{4.72}{4.66}$	$\frac{12.78}{12.95}$	230-233	72
3b	$C_{25}H_{22}N_4O_2S\\$	<u>67.70</u> 67.85	<u>5.12</u> 5.01	$\frac{12.50}{12.66}$	195-197	86
3c	$C_{26}H_{24}N_4O_2S\\$	$\frac{68.18}{68.40}$	$\frac{5.12}{5.30}$	$\frac{12.09}{12.27}$	208-210	82
3d	$C_{25}H_{21}ClN_4O_2S$	$\frac{62.76}{62.95}$	$\frac{4.29}{4.44}$	<u>11.58</u> 11.75	190-192	85
3e	$C_{26}H_{23}ClN_4O_2S$	$\frac{63.42}{63.60}$	$\frac{4.52}{4.72}$	<u>11.29</u> 11.41	193-195	79
6a	$C_{24}H_{22}N_4O_3S$	$\tfrac{64.63}{64.56}$	$\frac{4.81}{4.97}$	$\frac{12.35}{12.55}$	204-206	70
6b	$C_{32}H_{28}N_4O_2S\\$	<u>72.13</u> 72.16	$\frac{5.28}{5.30}$	$\frac{10.41}{10.52}$	207-209	77
6c	$C_{33}H_{30}N_4O_2S\\$	$\frac{72.39}{72.50}$	$\frac{5.32}{5.53}$	$\frac{10.08}{10.25}$	173-175	79
7	$C_{30}H_{25}N_{3}O_{4}S$	$\tfrac{68.68}{68.82}$	$\frac{4.76}{4.81}$	$\frac{8.18}{8.03}$	224-226	58

TABLE 2.	¹ H NMR S	Spectrum of	Compounds	За-е,	6a-c, and	7
----------	----------------------	-------------	-----------	-------	-----------	---

Com-	Chemical shifts, δ , ppm, J (Hz)
pound	
3a	4.24 (1H, s, H-3); 5.09 (1H, s, H-4); 5.99 (1H, d, $J = 2.6$, H-3 furan); 6.24 (1H, dd, $J = 2.6$, $J = 1.6$, H, 4 furan); 6.00 (1H, t, $J = 7.2$, H,);
	0.34 (1H, dd, $J = 2.0$, $J = 1.0$, H-4 Iuran); 0.90 (1H, t, $J = 7.2$, H _{arom}); 7.05 (1H, t, $J = 7.4$, H _{arom}); 7.20-7.54 (9H, m, H-5 furan and H _{arom});
	8.25 and 9.57 (both 1H, both br. s, NH ₂);
	10.52 and 10.57 (both 1H, both br. s, 2NHCO); 13.18 (1H, br. s, N ₍₁₎ H)
3b	4.11 (1H, s, H-3); 5.06 (1H, s, H-4); 6.90 (1H, t, $J = 7.0$, H_{arom}); 7.07 (1H, t, $J = 7.0$, H_{arom}); 7.20 (4H m H); 7.31 7.38 (5H m H); 7.54 (2H d $J = 7.5$ H);
	7.58 (2H, d, $J = 7.5$, H _{arom}); 8.17 and 9.41 (both 1H, both br. s, NH ₂);
	10.52 and 10.54 (both 1H, both br. s, 2NHCO); 13.33 (1H, br. s, $N_{(1)}H$)
3c	2.25 (3H, s, CH ₃); 4.07 (1H, s, H-3); 5.01 (1H, s, H-4); 6.90 (1H, t, $J = 6.7$, H _{arom});
	7.24 (2H. d. $J = 6.9$, H _{arom}); 7.32 (2H. d. $J = 6.9$, H _{arom}); 7.32 (2H. d. $J = 7.0$, H _{arom}); 7.34 (2H. d. $J = 7.8$, H _{arom}); 7.35 (2H. d. $J = 7.8$, H _{arom});
	7.58 (2H, d, $J = 7.8$, H _{arom}); 8.13 and 9.38 (both 1H, both br. s, NH ₂);
	10.49 and 10.51 (both 1H, both br. s, 2NHCO); 13.32 (1H, br. s, N ₍₁₎ H)
3d	$4,25$ (1H, s, H-3); 5.02 (1H, s, H-4); 6.89 (1H, t, $J = /.1$, H_{arom}); 7.05 (1H, t, $J = /.2$, H_{arom}); 7.19 (2H t $J = 7.7$ H_{arom}); 7.30 (2H t $J = 7.7$ H_{arom}); 7.38 (2H d $J = 8.3$ H_{arom});
	7.47 (2H, d, $J = 8.3$, H _{arom}); 7.53 (2H, d, $J = 8.0$, H _{arom}); 7.65 (2H, d, $J = 8.1$, H _{arom});
	8.92 and 9.91 (both 1H, both br. s, NH ₂); 10.52 and 10.96 (both 1H, both br. s, 2CONH);
30	13.35 (1H, 0T, S, $N_{(1)}H$) 2 21 (3H s CH-): 4 25 (1H s H-3): 5 01 (1H s H-4): 6 72 (1H d $I = 68$ H):
50	7.03-7.10 (2H, m, H _{arom}); $7.28-7.48$ (8H, m, H _{arom}); 7.65 (2H, d, $J = 8.4$, H _{arom});
	8.88 and 9.88 (both 1H, both br. s, NH ₂); 10.52 and 10.95 (both 1H, both br. s, 2NHCO);
60	13.30 (1H, br. s, $N_{(1)}H$) 2.42 (2H = CH): 2.06 (1H = 11.2): 4.74 (1H = 11.4): 6.11 (1H = 1.4.2.0) H.2 form):
oa	2.45 (5H, S, CH ₃), 5.96 (1H, C, H-5), 4.74 (1H, S, H-4), 0.11 (1H, d, $J = 2.0$, H-5 lutall), 6.34 (1H, dd, $J = 2.0$, $J = 1.5$, H-4 furan); 6.92 (1H, t, $J = 7.3$, H _{arom});
	7.05 (1H, t, $J = 7.3$, H _{arom}); 7.19 (2H, t, $J = 7.8$, H _{arom}); 7.30 (2H, t, $J = 7.8$, H _{arom});
	7.52 (2H, d, $J = 7.7$, H _{arom}); 7.56-7.60 (3H, m, H _{arom} and H-5 furan); 7.78 (2H, br. s, NH ₂); 8 40 and 10 25 (both 1H, both br. s, 2NHCO)
6b	3.60 (1H, s, H-3); 4.23 and 4.37 (both 1H, both d, 2J = 13.1, CH2); 4.66 (1H, s, H-4);
	$6.92 (1H, t, J = 7.2, H_{arom}); 7.08 (1H, t, J = 7.2, H_{arom}); 7.14-7.35 (12H, m, H_{arom});$
	7.39 (2H, d, $J = 8.0$, H _{aron}); 7.44 (2H, d, $J = 8.1$, H _{aron}); 7.56 (2H, br. s, NH ₂); 7.61 (2H, d, $J = 8.0$, H _{aron}); 8.89 and 9.91 (both 1H, both br. s, 2NHCO)
6c	$2.25 (3H, s, CH_3); 3.57 (1H, s, H-3); 4.24 and 4.37 (both 1H, both d, {}^{2}J = 13.2, CH_2);$
	4.62 (1H, s, H-4); 6.93 (1H, t, $J = 6.5$, H _{arom}); 7.06–7.50 (16H, m, H _{arom});
	7.56 (2H, br. s, NH ₂); 7.61 (2H, d, $J = 7.5$, H _{arom}); 8.84 and 9.88 (both 1H, both br. s, 2NHCO)
7	3.90 (1H, d, J = 5.3, H-3); 4.12 and 4.24 (both 1H, both d2J = 12.1, CH2);
	4.70 (1H, d, J = 5.3, H-4); 6.20 (1H, d, J = 3.0, H-3 furan);
	$6.35 (1H, dd, J = 3.0, J = 1.9, H-4 \text{ furan}); 7.00 (1H, t, J = 7.3, H_{arom});$ 7.07 (1H t J = 7.3, H); 7.20, 7.35 (10H m H); 7.44 (1H d J = 7.0, H);
	7.56-7.60 (3H, m, H-5 furan and H_{arom}); 9.58 (1H, br. s, N ₍₁₎ H);
	10.30 and 10.32 (both 1H, both br. s, NHCO)

We also noted the presence of signals of the amino group protons displayed as two broadened singlets at 8.31-8.92 and 9.38-9.91 ppm respectively. These data show the nonequivalence of the NH_2 group protons, caused probably by intramolecular hydrogen bonds. Previously, according to X-ray structural data, we detected the presence of an extremely strong intramolecular hydrogen bond, closing a six-membered ring between a hydrogen atom of the amino group and the oxygen atom of an amide fragment in pyridine, in which the amino group and the arylcarbamoyl fragment are disposed vicinally [9].

The mass spectra of the substituted tetrahydropyridine-2-thiones **3a-e** are characterized by the presence of a peak for the molecular ion at an even number, which corresponds to the "nitrogen rule" [10], and also by the presence of an $[M+2]^+$ ion which may indicate the content in the molecule of one sulfur atom [11] (Table 3).

A special feature of the ¹H NMR spectra of substituted 3,4-dihydropyridines **6a,b** and tetrahydropyridin-2-one **7** is the splitting of the SCH₂Ph methylene group proton signals into two doublets, which indicates their nonequivalence, caused by the absence of rotation of the alkyl substituent around the S–CH₂Ph bond. This fact, known in a series of partially hydrogenated 2-alkylthiopyridines [12, 13], enables ²J be recorded for the SCH₂Ph group, which is within the limits 12.1-13.2 Hz (Table 2).

Com-	IR spectrum, v, cm ⁻¹		Mass spectrum $m/r(I \cdot 9/)$	
pound	NH ₂ , NH	CONH, δ_{NH_2}	Mass spectrum, <i>m/2</i> (Irel, 76)	
3a	3380, 3296, 3161	1684, 1656	434 (14) [M+2] ⁺ , 432 [M] ⁺ (62), 430 [M-2] ⁺ (100), 356 (19), 312 (14), 218 (9), 193 (7), 124 (6), 84 (5)	
3b	3302, 3268 2965	1684, 1654	444 [M+2] ⁺ (9), 442 [M] (49), 440 [M–2] ⁺ (100), 366 (12), 322 (10), 280 (6), 188 (15), 154 (7), 106 (9), 85 (16)	
3c	3359, 3177, 2963	1687, 1622	458 [M+2] ⁺ (11), 456 [M] ⁺ (65), 454 [M-2] ⁺ (100), 428 (6), 380 (8), 352 (12), 188 (15), 159 (13), 122 (10), 84 (17)	
3d	3350, 3294, 3134	1696, 1662	479 [M+2] ⁺ (48); 477 [M] ⁺ (100), 384 (18), 356 (9), 239 (11), 186 (5), 94 (16)	
3e	3318, 3296, 2956	1686, 1631	492 [M+1] ⁺ (61), 491 (100) [M] ⁺ , 459 (10), 398 (14), 296 (5), 220 (19), 180 (11), 83 (10)	
6a	3342, 3218, 2995	1698, 1653	448 [M+2] ⁺ (37), 447 [M+1] ⁺ (100), 428 (5), 354 (10), 260 (8), 157 (50), 99 (11)	
6b	3365, 3300, 3115	1684, 1637	534 [M+2] ⁺ (50), 533 [M+1] ⁺ (100), 440 (12), 295 (16), 157 (48), 94 (22)	
6c	3352, 3205, 3199	1683, 1653	546 [M] ⁺ (48), 544 [M–2] ⁺ (100), 388 (11), 261 (9), 136 (15), 106 (4), 84 (7)	
7	3310, 3214, 2965	1685, 1647	524 [M+1] ⁺ (100), 432 (15), 157 (14), 94 (12)	

TABLE 3. IR and Mass Spectra of Compounds 3a-e, 6a-c, and 7

EXPERIMENTAL

The IR spectra of the synthesized compounds were recorded on a IKS-40 instrument in nujol. The ¹H NMR spectra were recorded on a Varian Mercury 400 (400 MHz) instrument in DMSO-d₆ solution, internal standard was TMS. The mass spectra were obtained on a Chrommass GC/MS instrument Hewlett-Packard 5890/5972, on a HP-5 column MS (70 eV) in methylene chloride solution. Melting points were determined on a Kofler block. A check on the progress of reactions and the purity of the substances obtained was effected by TLC on Silufol UV-254 plates, eluent was an acetone–hexane mixture, 3:5, visualization with iodine vapor and UV light.

 $N_{(3)}$, $N_{(5)}$ -Diphenyl-6-amino-4-(2-furyl)-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamide (3a), $N_{(3)}$, $N_{(5)}$,4-Triphenyl-6-amino-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-carboxamide (3b), $N_{(3)}$, $N_{(5)}$ -Diphenyl-6-amino-4-(4-tolyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxamide (3c), $N_{(3)}$, $N_{(5)}$ -Diphenyl-6-amino-4-(4-chlorophenyl)-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamide (3d), and $N_{(3)}$ -(3-Tolyl)- $N_{(5)}$ -phenyl-6-amino-4-(4-chlorophenyl)-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamide (3e). The CH-acid **2a,b** (5 mmol) was added at 20°C to a stirred solution of metallic sodium (0.115 g, 5 mmol) in absolute ethanol (30 ml) and stirred for 10 min to form a homogeneous phase. The appropriate acrylamide **1a-d** (5 mmol) was then added, the mixture stirred for 2 h, after which the mixture was diluted with 10% hydrochloric acid to pH 6, and left at room temperature. After 1 day the solid which formed was filtered off, washed with ethanol and with hexane, and recrystallized from ethanol (Tables 1-3).

 $N_{(3)}, N_{(5)}-Diphenyl-6-amino-4-(2-furyl)-2-methylthio-3,4-dihydropyridine-3,5-dicarboxamide (6a), \\ N_{(3)}, N_{(5)}, 4-Triphenyl-6-amino-2-benzylthio-3,4-dihydropyridine-3,5-dicarboxamide (6b), and \\ N_{(3)}, N_{(5)}-2-benzylthio-3,4-dihydropyridine-3,5-dicarboxamide (6b), and \\ N_{(5)}-2-benzylthio-3,4-dihydropyridine-3,5-dicarboxamide (6b), and \\ N_{(5)}-2-benzylthio-3,4-dihydropyridine-3,4-di$

6-amino-2-benzylthio-4-(4-tolyl)-3,4-dihydropyridine-3,5-dicarboxamide (6c). A solution of metallic sodium (0.115 g, 5 mmol) in absolute ethanol (15 ml) was added to a stirred suspension of compound **3a-c** (5 mmol) in absolute ethanol (15 ml) at 20°C, and stirred for 10 min to obtain a homogeneous phase. Alkyl halide **5a,b** (5 mmol) was added to the reaction mixture, which was stirred for 1 h, and then left for 2 days at room temperature. The solid formed was filtered off, washed with ethanol, and with hexane, and recrystallized from ethanol (Tables 1-3).

 $N_{(3)}$, $N_{(5)}$ -Diphenyl-6-benzylthio-4-(2-furyl)-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamide (7). A 10% aqueous solution of KOH (1.68 ml, 3 mmol) was added to a stirred suspension of compound **3a** (1.30 g, 3 mmol) in ethanol (30 ml), and the mixture was stirred at 50°C until complete solution. Benzyl chloride **5b** (0.35 ml, 3 mmol) was added to the obtained solution, and the mixture was left for 2 days. The resulting solid was filtered off, washed with ethanol, and with hexane, and recrystallized from ethanol (Tables 1-3).

REFERENCES

- 1. S. K. Swami, T. M. Reddy, and V. M. Reddy, Indian J, Pharm. Sci., 60, 102 (1998).
- 2. G. A. Kilcigil, R. Ertan, S.Özbey, and E. Kendi, J. Heterocycl. Chem., 35, 1485 (1998).
- 3. P. E. Aldrich, R. A. Earl, and P. Ma, US Pat. 5166148; *Ref. Zh. Khim.*, 7056P (1994).
- 4. D. Nagarathman, J. M. Wetrel, S. W. Miao, M. R. Marzabadi, G. Chin, W. C. Wong, X. Hong, J. Fang, C. Forray, T. A. Branchek, W. E. Hlydor, R. S. I. Chang, T. Broten, T. W. Schort, and C. Gluchowski, *J. Med. Chem.*, **41**, 5320 (1988).
- 5. C. Gluchowski, J. M. Wetrel, G. Chin, M. R. Marzabadi, W. C. Wong, and D. Nagarathnam, US Pat. 5767131; *Chem. Abs.*, **129**, 67709 (1998).
- 6. A. D. Dyachenko, S. M. Desenko, V. D. Dyachenko, and E. B. Rusanov, *Khim. Geterotsikl. Soedin.*, 872 (2003). [*Chem. Heterocycl. Comp.*, **39**, 744 (2003)].
- 7. V. D. Dyachenko and R. P. Tkachev, Zh. Org. Khim., 39, 1245 (2003).
- 8. B. I. Ionin, B. A. Ershov, and A. I. Kol'tsov, *NMR Spectroscopy in Organic Chemistry* [in Russian], Khimiya, Leningrad (1983), p. 57.
- 9. V. D. Dyachenko, R. P. Tkachev, and A. N. Chernega, *Khim. Geterotsikl. Soedin.*, 589 (2005). [*Chem. Heterocycl. Comp.*, **41**, 503 (2005)].
- 10. V. G. Zamkin, A. V. Varlamov, A. I. Mikaya, and N. S. Prostakov, *Principles of Mass Spectroscopy of Organic Compounds* [in Russian], MAIK Nauka/Interperiodika, Moscow (2001), 286 pp.
- 11. R. Silverstein, G Bassler, and T. Merrill, *Spectroscopic Identification of Organic Compounds* [Russian translation], Mir, Moscow (1977), 442 pp.
- 12. V. D. Dyachenko and D. A. Krasnikov, Visnik Kharkiv. Natsional. Univ., **596** (Khimiya), No. 10 (33), 63 (2003).
- 13. V. D. Dyachenko, Ukr. Khim. Zh., 73, 53 (2006).